skip to main content


Search for: All records

Creators/Authors contains: "Schwalbe, Harald"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Replication of the coronavirus genome starts with the formation of viral RNA-containing double-membrane vesicles (DMV) following viral entry into the host cell. The multi-domain nonstructural protein 3 (nsp3) is the largest protein encoded by the known coronavirus genome and serves as a central component of the viral replication and transcription machinery. Previous studies demonstrated that the highly-conserved C-terminal region of nsp3 is essential for subcellular membrane rearrangement, yet the underlying mechanisms remain elusive. Here we report the crystal structure of the CoV-Y domain, the most C-terminal domain of the SARS-CoV-2 nsp3, at 2.4 Å-resolution. CoV-Y adopts a previously uncharacterized V-shaped fold featuring three distinct subdomains. Sequence alignment and structure prediction suggest that this fold is likely shared by the CoV-Y domains from closely related nsp3 homologs. NMR-based fragment screening combined with molecular docking identifies surface cavities in CoV-Y for interaction with potential ligands and other nsps. These studies provide the first structural view on a complete nsp3 CoV-Y domain, and the molecular framework for understanding the architecture, assembly and function of the nsp3 C-terminal domains in coronavirus replication. Our work illuminates nsp3 as a potential target for therapeutic interventions to aid in the on-going battle against the COVID-19 pandemic and diseases caused by other coronaviruses.

     
    more » « less
  2. Flory’s random coil model assumes that conformational fluctuations of amino acid residues in unfolded poly(oligo)peptides and proteins are uncorrelated (isolated pair hypothesis, IPH). This implies that conformational energies, entropies and solvation free energies are all additive. Nearly 25 years ago, analyses of coil libraries cast some doubt on this notion, in that they revealed that aromatic, but also β-branched side chains, could change the 3J(HNHCα) coupling of their neighbors. Since then, multiple bioinformatical, computational and experimental studies have revealed that conformational propensities of amino acids in unfolded peptides and proteins depend on their nearest neighbors. We used recently reported and newly obtained Ramachandran plots of tetra- and pentapeptides with non-terminal homo- and heterosequences of amino acid residues to quantitatively determine nearest neighbor coupling between them with a Ising type model. Results reveal that, depending on the choice of amino acid residue pairs, nearest neighbor interactions either stabilize or destabilize pairs of polyproline II and β-strand conformations. This leads to a redistribution of population between these conformations and a reduction in conformational entropy. Interactions between residues in polyproline II and turn(helix)-forming conformations seem to be cooperative in most cases, but the respective interaction parameters are subject to large statistical errors. 
    more » « less
  3. null (Ed.)
  4. Abstract SARS‐CoV‐2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti‐virals. Within the international Covid19‐NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR‐detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure‐based drug design against the SCoV2 proteome. 
    more » « less
  5. The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com , we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form. 
    more » « less